MATH 119: Midterm 1

Name: \qquad

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10
6	10

1. Short answer questions:
(a) Suppose you write

$$
(x+y)^{2} z^{2}=x^{2}+y^{2} z^{2}
$$

What are the two errors you made?
(1) x and y are terms. can only manipulate expounds (exponent lace) across factors.
(2) everything to the left of z^{2} should be encapsulated in parentheses sines yo ore multiplying z^{*} in to ≥ 2 terms
(b) True or false: We can simplify $\frac{x^{2}+x-2}{x-1}$ by crossing out the x 's to become $\frac{x^{2}-2}{-1}$. If not, properly simplify the expression.
False; x is both a term in the context of the entire numiontur and denominator.

$$
\frac{x^{2}+x-2}{x-1}=\frac{(x-1) \cdot(x+2)}{(x-1)}=x+2
$$

(c) Bob has a function $f(x)$. It is not one-to-one. However, he goes ahead and finds the inverse f^{-1}. What is the problem with f^{-1} and why?
f^{-1} is not a function because one input is sent to ut least two different outputs.
(d) If $f(x)=\frac{x}{1-x}$, find $f\left(x^{2}-1\right)$.

$$
f\left(x^{2}-1\right)=\frac{x^{2}-1}{1-\left(x^{2}-1\right)}=\frac{x^{2}-1}{1-x^{2}+1}=\frac{x^{2}-1}{2-x^{2}}
$$

(e) Suppose we have a base function $f(x)=x^{3}$ and we have

$$
g(x)=(x+2)^{3}+4 \quad h(x)=\left(\frac{1}{2} x+2\right)^{3}+4=\left(\frac{1}{2}(x+4)\right)^{3}+4
$$

Does $g(x)$ have the same horizontal shift as $h(x)$? If not, state what both $g(x)$ and $h(x)$'s horizontal shift are.

No. $g(x)$ is 2 units to the left of $f(x)$ while $h(x)$ is 4 units to the 1 pf of $f(x)$.
2. Suppose

$$
f(x)=-3 \sin (2 x+\pi)=-3 \sin \left(2\left(x+\frac{\pi}{2}\right)\right)
$$

Do two things:
(a) Graph at least one period of $f(x)$ using transformations. Label the x-axis tick marks you are using.
(b) Write out the blueprint of transformations starting with $g(x)=\sin x$ to end up at $f(x)$.

$$
\begin{array}{ll}
g(x)=\sin (x) & \\
h(x)=-g(x) & =-\sin (x) \\
j(x)=3 h(x) & =-3 \sin (x) \\
\text { reflection armand } x \text {-axis }
\end{array}
$$

3. Let

$$
f(x)=2 x^{2}-7 x+3 \quad g(x)=\sin (x)-\frac{1}{x-1}
$$

(a) Factor $f(x)$.

$$
(2 x-1)(x-3)
$$

(b) Find and simplify $f(x)-g(x)$ and it's domain given in interval notation.

$$
\begin{aligned}
f(x)-g(x) & =2 x^{2}-7 x+3-\left(\sin (x)-\frac{1}{x-1}\right) \\
& =2 x^{2}-7 x+1-\sin (x)+\frac{1}{x-1},(-\infty, 1) \cup(1, \infty)
\end{aligned}
$$

(c) Evaluate and simplify $f(x+h)-f(x)$ (you should be able to factor out h at the end).

$$
\begin{aligned}
f(x+h)-f(x) & =2(x+h)^{2}-7(x+h)+3-\left(2 x^{2}-7 x+3\right) \\
& =2\left(x^{2}+2 x h+h^{2}\right)-7 x-7 h+3-2 x^{2}+7 x-3 \\
& =2 x^{2}+4 x h+2 h^{2}-7 h-2 x^{2} \\
& =h \cdot(4 x+2 h-7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. Given } a x-b x(c+d)-e x=g x, \text { isolate } x \text {. } \\
& a x-b c x-b d x-c x=g x \\
& a x-b c x-b d x-e x-g x=0 \\
& x \cdot(a-b c-b d-e-g)=\frac{0}{a-b c-b d-e-y} \\
& x-b d-c-g
\end{aligned}
$$

5. Solve for x :

$$
\frac{10}{x}-\frac{12}{x-3}+4=0
$$

$$
\begin{aligned}
& \text { LCD: } x(x-3) \\
& \left.\begin{array}{r}
x(x-3)\left(\frac{10}{x}-\frac{12}{x-3}+4\right)=0 \cdot x(x-3) \\
\frac{10 x(x-3)}{x}-\frac{12 x(x-3)}{(x-3)}+4 x(x-3)
\end{array} \begin{array}{r}
10 x-30-12 x+4 x^{2}-12 x=0 \\
4 x^{2}-12 x-30
\end{array}\right)=0 \\
& 2(2 x+3)(2 x-10)=0
\end{aligned}
$$

$$
\begin{array}{rr}
2 x+3=0 & 2 x-10=0 \\
x=-\frac{3}{2} & 2 x=10 \\
x=-\frac{3}{2} & x=5
\end{array}
$$

Chock $x=-\frac{3}{2}$

$$
\begin{aligned}
& \frac{10}{-\frac{3}{2}}-\frac{12}{-\frac{3}{2}-3}+4=10 \cdot\left(-\frac{2}{3}\right)-\frac{12}{-\frac{3}{2}-\frac{6}{2}}+4 \\
&=-\frac{20}{3}-\frac{12}{-\frac{9}{2}}+4 \\
&=-\frac{20}{3}+\frac{8}{3}+\frac{4}{3}+\frac{2}{9}+4 \\
&=0+20 \\
& \frac{12}{3} \\
& \frac{10}{10}+\frac{12}{5}+4=2-\frac{12}{2}+4
\end{aligned}
$$

6. Evaluate the following trigonometric functions:
(a) $\sin \left(\frac{5 \pi}{4}\right)$
(1) $\bar{t}=\frac{\pi}{4}$

(2) \sin negutive in III

$$
\sin \left(\frac{5 \pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}
$$

(1) $\bar{t}=\frac{\pi}{6}$
(2) cos negatiur in II

$$
\cos \left(-\frac{7 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}
$$

(c) $\tan \left(\frac{-40 \pi}{3}\right)=\tan \left(-\frac{39 \pi}{3}-\frac{\pi}{3}\right)$
(1) $t=\frac{\pi}{3}$

$$
=\tan \left(-13 \pi-\frac{\pi}{3}\right)
$$

(2) tan negativi in II

$$
=\csc \left(-\frac{4 \pi}{3}\right)
$$

(1)

$$
\begin{aligned}
\tan \left(-\frac{40 \pi}{3}\right)= & -\tan \left(\frac{\pi}{3}\right) \\
=-\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} & =-\frac{\sqrt{3}}{2} \cdot \frac{2}{1} \\
& =-\sqrt{3}
\end{aligned}
$$

(1) $t=\frac{\pi}{3}$

(2) csc positic in II since Sin pusitie in II

$$
\begin{aligned}
\csc _{6}\left(-\frac{4 \pi}{3}\right)=\csc \left(\frac{\pi}{3}\right)=\frac{1}{\frac{\sqrt{3}}{2}} & =\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

